紫外線による劣化(老化)
あの女優さんは最近劣化してるね。などと大変失礼だと思うのですが、人の場合は歳を取るにつれて、皮膚のシミやシワが増えたり張りが無くなり、全体的にお肉が下がってくるなどの外見的な変化が見て取れる状態、つまりは老化したことを言っている場合が多いような気がします。
自動車ボディコーティング被膜についても、人と同じように時間の経過とともに美観や、保護機能が衰えていくことがあります。人の老化になぞらえてコーティング劣化の具体的な現象を書き出してみました。
人の場合は、細胞が死んでは生まれるを繰り返す再生能力がありますが、新陳代謝により細胞が再生できる場合においても、日光に含まれている紫外線の影響を受けて「老化:劣化」していきます。
一方のコーティング被膜では、人の皮膚のような再生能力はありませんので、例外なく時間の経過とともに徐々に劣化していきます。
それでは、コーティングにおける劣化とはどのようにして起きるのでしょうか。
コーティング被膜の劣化は、紫外線のほかに温度上昇や酸化、大気や雨に含まれる物質による化学的な作用や物理的な擦過・摩耗などが原因として考えられます。
今回は、コーティング被膜を構成する物質との関連性が、数字で捉えやすい電磁波=紫外線を例として、劣化のメカニズムについてまとめてみたいと思います。
私たちは紫外線がコーティング被膜や、人の皮膚を劣化・老化させる要因であることはよく知っていますが、どうして紫外線にはそのようなパワーがあるのでしょうか?
電磁波:紫外線(光子)のエネルギー
紫外線を含む光は、電波や放射線と同じ電磁波の一種です。
電磁波は波長の違いによって分類がなされています。波長の長い(周波数が低い)ほうから、電波~光~放射線となっています。
更に光を細分化しますと、波長の長い方から、赤外線~可視光線~紫外線となります。
お気づきのように、一般的に波長が短い電磁波ほど、人体や物にとっては劣化を早める影響力が高いことが言えます。光よりも波長の短い放射線は言うに及ばず、光の中でも波長の短い紫外線はそれにあたります。
波長の長い電磁波よりも波長の短い電磁波のほうが、劣化を早める理由とはどのようなことなのでしょう?
答えはズバリ、電磁波が持つエネルギーが、物質を形づくる原子間の結合を断ち切ることで、物質を分解し別の物質に変質させるからなのです。
もう少しくわしく言いますと、電磁波は光子としてのエネルギーを持っており、高校の物理で勉強したアインシュタインの「光量子説」や、「プランク定数」あるいは「プランク法則」を思い出してみましょう。
光子の持つエネルギーは、波長に反比例する。
つまり、電磁波の周波数が高い=波長が短いほど、電磁波(光子)の持つエネルギーが大きくなることを表しています。もう一度電磁波の持つエネルギーの大きさを整理してみましょう。
紫外線の光子エネルギー
このように、光に分類される電磁波のなかで、最も高いエネルギーを持つ紫外線とは、どの程度のエネルギーを持っていて、その光子エネルギーが物質に与える影響はどの程度のものなのでしょうか?
絶え間なく太陽から降り注ぐ日光には、人間の眼によって感知できる可視光線や、感知できない赤外線や紫外線があります。赤外線や可視光線よりも紫外線のエネルギーが大きいことは解りました。
それでは、紫外線のもつエネルギーを具体的な数字でみてみましょう。
紫外線の中でも波長が短く、エネルギーが強い紫外線UVCは、地球の大気により吸収され地上にはほとんど届きません。
地上に降り注ぐ可視光線の中で最も波長の短い「紫」と、紫外線の中で最も波長の短い「UVA」、この境界あたりの波長:400nmの光子エネルギーは、約3eV=70kcal/mol程度であり、UVBの波長:300nmの光子エネルギーは、約4eV=92kcal/mol程度です。
大気によって遮ることのできない、地上に降り注ぐ最も高エネルギーの紫外線(UVBとUVCの境界辺り)光子エネルギーは、最大でおよそ100kcal/mol程度であると考えられます。
光子エネルギーの影響
原発事故や原子爆弾による放射線被ばくなど特殊な事象を除いて、通常の環境において人体や車などが晒される電磁波エネルギーで最大のものは、太陽光に含まれる紫外線(UVA~UVB:約70~100kcal/mol)であることが解りました。
さて、太陽光として照射された紫外線の光子エネルギーは、物質に対してどのような影響を与えるのでしょうか?
その前に、物質の基本的な構成を思い出してみましょう。
様々な種類の原子と原子が電子を共有することで結合が起こり、結合した原子核の種類と電子の構成によって、物質の種類や性質が決まる大きな要因です。人の皮膚やコーティングの被膜も、複数の原子核同士が共有する電子の構成によって形づくられた物質であるわけです。
物質に電波や光などの電磁波(光子)が照射され光子が衝突すると、物質の原子あるいは分子を構成する電子が、原子核を周回する元の軌道から、外側の軌道への移動(電子遷移)が起こることがあります。
このような電子遷移に伴い、様々な化学的変化が起きるのですが、分子の中で共有結合している原子間結合エネルギーを、電磁波の光子エネルギーが上回ると、分子内の原子間結合の開裂、すなわち「結合が切れる」という現象が発生します。
このように一旦共有結合が切れますと、それぞれの原子はその時の条件に即して再び電子を共有する結合をしようとしますので、多くの場合では結合が切れる前の物質とは別の物質に変化します。
フロンガスと紫外線によるオゾン層破壊
太陽光に含まれる紫外線の影響によって、共有結合が切れて再び結合する例として、近年問題になっている環境破壊の例をみましょう。
人の手によって作られたフロンガス(クロロフルオロカーボン類:CFC)が成層圏に拡がり、このフロンガスが紫外線によって分解され、塩素(Cl)を発生させることで、塩素が触媒となって化学反応を起こすことで、地球大気のオゾン層を破壊してゆきます。
オゾン層が破壊されますと、これまでオゾン層がある程度バリヤしてきた紫外線UVBが、これまでよりも強いエネルギーを保ったまま地上まで到達し易くなり、人を含む生態系の遺伝子などに悪影響を与える原因とななっています。
成層圏に達したフロン:CFC-11(トリクロロフルオロメタン)を構成している、フッ素(F)や炭素(C)と塩素(Cl)が、紫外線の光子エネルギーによって炭素と塩素間の結合が切れて、元来不安定なオゾン分子(O3)フロン由来の塩素(Cl)とが、新たに結合することで、一酸化塩素分子や酸素分子に生まれ変わり、オゾンが破壊(化学変化)されてしまうわけです。
これはまさに、紫外線などの電磁波による分解劣化の地球規模での例になります。
この例をもう少しくわしく見てみましょう。
フロン:CFC-11(分子式CCl3F)は、原子価4の炭素(C)を中心として、炭素から伸びる一つの手にフッ素(F)が結合し、残りの三つの手にはそれぞれ塩素(Cl)が結合しています。
フロン:CFC-11分子の原子間結合エネルギーを調べてみましょう。
一方のフロンを分解する紫外線UVB(波長280~315nm)の光子エネルギーは、下記のようになります。
このようにUVBの光子(電磁波)エネルギーは、炭素と塩素の結合エネルギーよりも大きいため、C-Clの結合を断ち切って(開裂)しまうわけです。
オゾンと同じように私たちの身の回りにあるものは、このような原理で紫外線など電磁波の影響を受け続けているわけですが、特に波長の短い光であるために光子エネルギーが大きい紫外線は、物質の化学変化(開裂と結合)を促進させるパワーが大きいと言うわけです。
紫外線に晒される太陽電池
ここで身近な例として、常時太陽光にさらされる太陽電池パネルを例として紫外線の影響をみてみたいと思います。
以前の当ブログhttp://coating.th-angel.com/2013/10/30.htmlでも触れましたが、およそ30年前に設置された奈良県・壷阪寺に設置された「シャープ製太陽光発電パネル」は、現在でも良好な発電効率で現役稼働中です。
壷阪寺の太陽電池セル封止材としてシリコーンが使われ、優れた耐候性・耐久性を保つことによって、発電効率を維持しながら稼働中であるとのことです。もしも、シリコーン以外の透明な封止材が使われていたならば、どのようなことが起きるのでしょうか。
シリコーン樹脂以外の樹脂の多くは炭素を中心とした分子構造です。たとえば透明性の高いプラスチックの中で、アクリルなどと比較して紫外線による化学変化が少ないとされるポリカーボネートでの紫外線劣化は下記のように考えられます。
ポリカーボネートの基本的な分子骨格は、炭素(C)と炭素あるいは、炭素(C)と酸素(O)によって構成されています。
このような分子骨格のポリカーボネートに、太陽光(紫外線)が照射されますと、炭素同士の結合エネルギー C-C:83kcal/mol炭素(C)や、炭素(C)と酸素(O)間の結合エネルギー C-O:86kcal/molは、紫外線UVA~UVB帯域の光子エネルギー:80~100kcal/mol程度よりも小さいため、原子間結合が切断されることによって劣化するわけです。
ポリカーボネートは、割れにくいことや可視光線の透明性が高いことから、前述のように比較的紫外線による劣化も少ないため、クルマのヘッドランプレンズや、カーポートの屋根材などに広く使用されています。
しかしご存知のように、クルマのヘッドランプに使用されているポリカーボネートは、時間の経過とともに黄色く変色(黄変)します。これは紫外線と酸素によって分解・劣化が進行し、分子構造が変化することで可視光線の吸収スペクトルが変化(黄変)するためです。
仮にポリカーボネートを太陽電池セルの封止材として使用した場合は、ヘッドランプのように数年の使用で黄変してしまうようでは、太陽光が太陽電池セルに十分に届かずに発電効率が下がってしまうことが予想されます。
太陽電池セル封止材の現状と将来
実際の太陽電池の封止材としてはポリカーボネートではなく、柔らかく透明性が高いEVA(エチレン・ビニル・アセテート)が広く使われています。
EVAは、樹脂の中では紫外線劣化し難いものですが、炭素と酸素による分子骨格であるため、長年の使用により透明性が落ちて発電効率に影響する原因のひとつと考えられています。
前述の奈良県・壷阪寺の太陽光発電パネルは、現在主流のEVA封止材ではなく、より劣化が少ないシリコーンが使われています。
現在市場に出ている多くの太陽電池パネルは、製造コスト低減などの理由でEVAが使用されており、シリコーンの使用が見送られているようです。しかし最近は製造コストの改善がみられる可能性が出てきたため、太陽電池セルの封止材として、EVAよりも紫外線に強いシリコーンが再び注目されているようです。
紫外線に負けないシリコーンコーティング・ガラスコーティング
お気づきのようにシリコーンが、ポリカーボネートやEVA(エチレン・ビニル・アセテート)よりも紫外線による劣化が少ない理由は、ケイ素(Si)を分子骨格としているためです。
各物質の結合エネルギーと、紫外線の光子エネルギーを比較してみましょう。
紫外線(UVA~UVB)の光子エネルギー
ポリカーボネートやEVAなどの基本骨格・原子間結合エネルギー
シリコーンやガラスの基本骨格・原子間結合エネルギー
このように、ポリカーボネートやEVAの分子骨格は、地上に到達するUVA・UVB紫外線の光子エネルギーよりも、分子内の結合エネルギーが小さいため切断され劣化変質します。
一方のシリコーンの分子骨格は、ガラスと同様にケイ素を中心としたSi-O結合(ケイ素化合物)であるために、UVA・UVBの光子エネルギーを上回りますので、長期間に渡り劣化や変質が起こりにくいのです。
UVB : 102 kcal/mol < Si-O : 110 kcal/mol
上記のような関係から、Si-O分子骨格であるシリコーンレジンコーティングや、ガラスコーティングは、紫外線UVA/UVBに負けないコーティングであるわけです。
本ブログ運営:株式会社THエンゼル
あの女優さんは最近劣化してるね。などと大変失礼だと思うのですが、人の場合は歳を取るにつれて、皮膚のシミやシワが増えたり張りが無くなり、全体的にお肉が下がってくるなどの外見的な変化が見て取れる状態、つまりは老化したことを言っている場合が多いような気がします。
自動車ボディコーティング被膜についても、人と同じように時間の経過とともに美観や、保護機能が衰えていくことがあります。人の老化になぞらえてコーティング劣化の具体的な現象を書き出してみました。
1.撥水性・疎水性が弱まってきた。
2.汚れがつきやすくなった。
3.洗車しても汚れが落ちにくくなった。
4.洗車しても光沢が落ちてきた。
人の場合は、細胞が死んでは生まれるを繰り返す再生能力がありますが、新陳代謝により細胞が再生できる場合においても、日光に含まれている紫外線の影響を受けて「老化:劣化」していきます。
一方のコーティング被膜では、人の皮膚のような再生能力はありませんので、例外なく時間の経過とともに徐々に劣化していきます。
それでは、コーティングにおける劣化とはどのようにして起きるのでしょうか。
コーティング被膜の劣化は、紫外線のほかに温度上昇や酸化、大気や雨に含まれる物質による化学的な作用や物理的な擦過・摩耗などが原因として考えられます。
今回は、コーティング被膜を構成する物質との関連性が、数字で捉えやすい電磁波=紫外線を例として、劣化のメカニズムについてまとめてみたいと思います。
私たちは紫外線がコーティング被膜や、人の皮膚を劣化・老化させる要因であることはよく知っていますが、どうして紫外線にはそのようなパワーがあるのでしょうか?
電磁波:紫外線(光子)のエネルギー
紫外線を含む光は、電波や放射線と同じ電磁波の一種です。
電磁波は波長の違いによって分類がなされています。波長の長い(周波数が低い)ほうから、電波~光~放射線となっています。
更に光を細分化しますと、波長の長い方から、赤外線~可視光線~紫外線となります。
お気づきのように、一般的に波長が短い電磁波ほど、人体や物にとっては劣化を早める影響力が高いことが言えます。光よりも波長の短い放射線は言うに及ばず、光の中でも波長の短い紫外線はそれにあたります。
波長の長い電磁波よりも波長の短い電磁波のほうが、劣化を早める理由とはどのようなことなのでしょう?
答えはズバリ、電磁波が持つエネルギーが、物質を形づくる原子間の結合を断ち切ることで、物質を分解し別の物質に変質させるからなのです。
もう少しくわしく言いますと、電磁波は光子としてのエネルギーを持っており、高校の物理で勉強したアインシュタインの「光量子説」や、「プランク定数」あるいは「プランク法則」を思い出してみましょう。
光子の持つエネルギーは、波長に反比例する。
E=hc/λ
E: 光子1個のエネルギー
h: プランク定数 6.626×10^-34 [J・s]
c: 光速 2.998×10^8 [m/s]
λ: 電磁波の波長 10^-9 [m]
例えば、波長172nmの紫外線の場合、光子1個当りのエネルギーは1.15×10^-18J(7.22eV)、モル当りでは、167kcal/molです。
つまり、電磁波の周波数が高い=波長が短いほど、電磁波(光子)の持つエネルギーが大きくなることを表しています。もう一度電磁波の持つエネルギーの大きさを整理してみましょう。
電磁波 :電波<光<放射線
電波 :長波<中波<短波<超短波<マイクロ波
光 :赤外線<可視光線<紫外線
放射線 :X線<γ線
紫外線の光子エネルギー
このように、光に分類される電磁波のなかで、最も高いエネルギーを持つ紫外線とは、どの程度のエネルギーを持っていて、その光子エネルギーが物質に与える影響はどの程度のものなのでしょうか?
絶え間なく太陽から降り注ぐ日光には、人間の眼によって感知できる可視光線や、感知できない赤外線や紫外線があります。赤外線や可視光線よりも紫外線のエネルギーが大きいことは解りました。
それでは、紫外線のもつエネルギーを具体的な数字でみてみましょう。
紫外線の中でも波長が短く、エネルギーが強い紫外線UVCは、地球の大気により吸収され地上にはほとんど届きません。
地上に降り注ぐ可視光線の中で最も波長の短い「紫」と、紫外線の中で最も波長の短い「UVA」、この境界あたりの波長:400nmの光子エネルギーは、約3eV=70kcal/mol程度であり、UVBの波長:300nmの光子エネルギーは、約4eV=92kcal/mol程度です。
大気によって遮ることのできない、地上に降り注ぐ最も高エネルギーの紫外線(UVBとUVCの境界辺り)光子エネルギーは、最大でおよそ100kcal/mol程度であると考えられます。
光子エネルギーの影響
原発事故や原子爆弾による放射線被ばくなど特殊な事象を除いて、通常の環境において人体や車などが晒される電磁波エネルギーで最大のものは、太陽光に含まれる紫外線(UVA~UVB:約70~100kcal/mol)であることが解りました。
さて、太陽光として照射された紫外線の光子エネルギーは、物質に対してどのような影響を与えるのでしょうか?
その前に、物質の基本的な構成を思い出してみましょう。
様々な種類の原子と原子が電子を共有することで結合が起こり、結合した原子核の種類と電子の構成によって、物質の種類や性質が決まる大きな要因です。人の皮膚やコーティングの被膜も、複数の原子核同士が共有する電子の構成によって形づくられた物質であるわけです。
物質に電波や光などの電磁波(光子)が照射され光子が衝突すると、物質の原子あるいは分子を構成する電子が、原子核を周回する元の軌道から、外側の軌道への移動(電子遷移)が起こることがあります。
このような電子遷移に伴い、様々な化学的変化が起きるのですが、分子の中で共有結合している原子間結合エネルギーを、電磁波の光子エネルギーが上回ると、分子内の原子間結合の開裂、すなわち「結合が切れる」という現象が発生します。
このように一旦共有結合が切れますと、それぞれの原子はその時の条件に即して再び電子を共有する結合をしようとしますので、多くの場合では結合が切れる前の物質とは別の物質に変化します。
フロンガスと紫外線によるオゾン層破壊
太陽光に含まれる紫外線の影響によって、共有結合が切れて再び結合する例として、近年問題になっている環境破壊の例をみましょう。
人の手によって作られたフロンガス(クロロフルオロカーボン類:CFC)が成層圏に拡がり、このフロンガスが紫外線によって分解され、塩素(Cl)を発生させることで、塩素が触媒となって化学反応を起こすことで、地球大気のオゾン層を破壊してゆきます。
オゾン層が破壊されますと、これまでオゾン層がある程度バリヤしてきた紫外線UVBが、これまでよりも強いエネルギーを保ったまま地上まで到達し易くなり、人を含む生態系の遺伝子などに悪影響を与える原因とななっています。
(参考)気象庁:フロンによるオゾン層の破壊
http://www.data.jma.go.jp/gmd/env/ozonehp/3-25ozone_depletion.html
成層圏に達したフロン:CFC-11(トリクロロフルオロメタン)を構成している、フッ素(F)や炭素(C)と塩素(Cl)が、紫外線の光子エネルギーによって炭素と塩素間の結合が切れて、元来不安定なオゾン分子(O3)フロン由来の塩素(Cl)とが、新たに結合することで、一酸化塩素分子や酸素分子に生まれ変わり、オゾンが破壊(化学変化)されてしまうわけです。
これはまさに、紫外線などの電磁波による分解劣化の地球規模での例になります。
この例をもう少しくわしく見てみましょう。
フロン:CFC-11(分子式CCl3F)は、原子価4の炭素(C)を中心として、炭素から伸びる一つの手にフッ素(F)が結合し、残りの三つの手にはそれぞれ塩素(Cl)が結合しています。
フロン:CFC-11分子の原子間結合エネルギーを調べてみましょう。
・炭素とフッ素 (C-F):116 kcal/mol
・炭素と塩素 (C-Cl): 81 kcal/mol
一方のフロンを分解する紫外線UVB(波長280~315nm)の光子エネルギーは、下記のようになります。
・UVB(280~315nm):91~102 kcal/mol
このようにUVBの光子(電磁波)エネルギーは、炭素と塩素の結合エネルギーよりも大きいため、C-Clの結合を断ち切って(開裂)しまうわけです。
オゾンと同じように私たちの身の回りにあるものは、このような原理で紫外線など電磁波の影響を受け続けているわけですが、特に波長の短い光であるために光子エネルギーが大きい紫外線は、物質の化学変化(開裂と結合)を促進させるパワーが大きいと言うわけです。
紫外線に晒される太陽電池
ここで身近な例として、常時太陽光にさらされる太陽電池パネルを例として紫外線の影響をみてみたいと思います。
以前の当ブログhttp://coating.th-angel.com/2013/10/30.htmlでも触れましたが、およそ30年前に設置された奈良県・壷阪寺に設置された「シャープ製太陽光発電パネル」は、現在でも良好な発電効率で現役稼働中です。
壷阪寺の太陽電池セル封止材としてシリコーンが使われ、優れた耐候性・耐久性を保つことによって、発電効率を維持しながら稼働中であるとのことです。もしも、シリコーン以外の透明な封止材が使われていたならば、どのようなことが起きるのでしょうか。
シリコーン樹脂以外の樹脂の多くは炭素を中心とした分子構造です。たとえば透明性の高いプラスチックの中で、アクリルなどと比較して紫外線による化学変化が少ないとされるポリカーボネートでの紫外線劣化は下記のように考えられます。
ポリカーボネートの基本的な分子骨格は、炭素(C)と炭素あるいは、炭素(C)と酸素(O)によって構成されています。
カーボネート基 (-O-(C=O)-O-)
このような分子骨格のポリカーボネートに、太陽光(紫外線)が照射されますと、炭素同士の結合エネルギー C-C:83kcal/mol炭素(C)や、炭素(C)と酸素(O)間の結合エネルギー C-O:86kcal/molは、紫外線UVA~UVB帯域の光子エネルギー:80~100kcal/mol程度よりも小さいため、原子間結合が切断されることによって劣化するわけです。
ポリカーボネートは、割れにくいことや可視光線の透明性が高いことから、前述のように比較的紫外線による劣化も少ないため、クルマのヘッドランプレンズや、カーポートの屋根材などに広く使用されています。
しかしご存知のように、クルマのヘッドランプに使用されているポリカーボネートは、時間の経過とともに黄色く変色(黄変)します。これは紫外線と酸素によって分解・劣化が進行し、分子構造が変化することで可視光線の吸収スペクトルが変化(黄変)するためです。
仮にポリカーボネートを太陽電池セルの封止材として使用した場合は、ヘッドランプのように数年の使用で黄変してしまうようでは、太陽光が太陽電池セルに十分に届かずに発電効率が下がってしまうことが予想されます。
太陽電池セル封止材の現状と将来
実際の太陽電池の封止材としてはポリカーボネートではなく、柔らかく透明性が高いEVA(エチレン・ビニル・アセテート)が広く使われています。
EVAは、樹脂の中では紫外線劣化し難いものですが、炭素と酸素による分子骨格であるため、長年の使用により透明性が落ちて発電効率に影響する原因のひとつと考えられています。
前述の奈良県・壷阪寺の太陽光発電パネルは、現在主流のEVA封止材ではなく、より劣化が少ないシリコーンが使われています。
現在市場に出ている多くの太陽電池パネルは、製造コスト低減などの理由でEVAが使用されており、シリコーンの使用が見送られているようです。しかし最近は製造コストの改善がみられる可能性が出てきたため、太陽電池セルの封止材として、EVAよりも紫外線に強いシリコーンが再び注目されているようです。
紫外線に負けないシリコーンコーティング・ガラスコーティング
お気づきのようにシリコーンが、ポリカーボネートやEVA(エチレン・ビニル・アセテート)よりも紫外線による劣化が少ない理由は、ケイ素(Si)を分子骨格としているためです。
各物質の結合エネルギーと、紫外線の光子エネルギーを比較してみましょう。
紫外線(UVA~UVB)の光子エネルギー
・UVA(315~380nm) :75~ 91 kcal/mol
・UVB(280~315nm) :91~102 kcal/mol
ポリカーボネートやEVAなどの基本骨格・原子間結合エネルギー
・炭素と炭素 (C-C) :83 kcal/mol
・炭素と酸素 (C-O) :86 kcal/mol
シリコーンやガラスの基本骨格・原子間結合エネルギー
・ケイ素と酸素 (Si-O):110 kcal/mol
このように、ポリカーボネートやEVAの分子骨格は、地上に到達するUVA・UVB紫外線の光子エネルギーよりも、分子内の結合エネルギーが小さいため切断され劣化変質します。
一方のシリコーンの分子骨格は、ガラスと同様にケイ素を中心としたSi-O結合(ケイ素化合物)であるために、UVA・UVBの光子エネルギーを上回りますので、長期間に渡り劣化や変質が起こりにくいのです。
UVB : 102 kcal/mol < Si-O : 110 kcal/mol
上記のような関係から、Si-O分子骨格であるシリコーンレジンコーティングや、ガラスコーティングは、紫外線UVA/UVBに負けないコーティングであるわけです。
よろしければポチッとお願いします。 | ||
にほんブログ村 | カー用品・装備ランキング |
本ブログ運営:株式会社THエンゼル
コーティングのはなし ブログの記事一覧を表示します。
一覧リストを表示するまで、少々時間がかかる場合があります。
一覧リストを表示するまで、少々時間がかかる場合があります。